From Biomanufacturing to 3D Printing CIQTEK SEM Powers Breakthroughs at Ningbo University

Pushing the Frontiers of Bioprinting with CIQTEK SEM

At Ningbo University’s Institute of Intelligent Medicine and Biomedical Engineering, researchers are tackling real-world medical challenges by merging materials science, biology, medicine, information technology, and engineering. The Institute has quickly become a hub for wearable and remote healthcare innovations, advanced medical imaging, and intelligent analysis, intending to turn lab breakthroughs into real clinical impact.

Recently, Dr. Lei Shao, Executive Vice Dean of the Institute, shared highlights of his research journey and how CIQTEK's cutting-edge SEM is fueling his team’s discoveries.

CIQTEK SEM at Ningbo University’s Institute of Intelligent Medicine and Biomedical Engineering

CIQTEK SEM at Ningbo University’s Institute of Intelligent Medicine and Biomedical Engineering

Printing the Future: From Miniature Hearts to Vascular Networks

Since 2016, Dr. Shao has been pioneering biomanufacturing and 3D bioprinting, with the goal of engineering living, functional tissues outside the human body. His team’s work spans from 3D-printed miniature hearts to complex vascularized structures, with applications in drug screening, disease modeling, and regenerative medicine.

A 3D-printed miniature heart

 

Backed by funding from the National Natural Science Foundation of China and local research agencies, his lab has introduced several breakthroughs:

  • Smart bioprinting strategies: Using fluid rope-coiling effects with coaxial bioprinting to fabricate microfibers with controlled morphology, enabling the creation of vascular organoids.

  • Cryopreservable cell microfibers: Developing standardized, scalable, and cryopreservable cellular microfibers through coaxial bioprinting, with high potential for 3D cell culture, organoid fabrication, drug screening, and transplantation.

  • Sacrificial bioinks: Printing mesoscopic porous networks using sacrificial microgel bioinks, building nutrient pathways for effective oxygen/nutrient delivery.

  • Complex vascular systems: Constructing complex vascular networks with coaxial bioprinting while inducing in-situ endothelial cell deposition, solving challenges in vascularization of complex structures.

  • Anisotropic tissues: Creating anisotropic tissues using shear-oriented bioinks and pre-shearing printing methods.

  • High-cell-density constructs: Proposing an original liquid-particle support bath printing technique for high-cell-density bioinks, achieving lifelike bioactive tissues while overcoming the long-standing trade-off between printability and cell viability in extrusion-based bioprinting.

These advances are paving the way toward functional, transplantable tissues, and potentially even engineered organs.

Selected publications

 

Accelerating Discovery with CIQTEK SEM

With science advancing rapidly, biomedical research stands at the forefront of innovation. Higher efficiency often leads to greater breakthroughs. According to Dr. Shao, scanning electron microscopy (SEM) is one of the most indispensable scientific instruments at the Institute. Since adopting CIQTEK’s field-emission SEM, research efficiency and innovation at the Institute have advanced significantly.

“In the past, we had to send samples to other labs and often waited in long queues, which slowed down our research,” Dr. Shao explained. “Now, with CIQTEK’s SEM in-house, we can capture stunning details of biological materials, from 10 nm hydrogel particles to nanofiber networks inside composite hydrogels. The clarity is game-changing.”

The results speak for themselves: multiple high-impact publications on vascularized tissues, drug carriers, and biomaterials have already stemmed from this work.

Selected publications powred by CIQTEK SEMSelected publications

 

For Dr. Shao, the instrument has become more than a microscope:

“It’s an accelerator for innovation, helping us move faster from fundamental research to practical applications.”

From miniature 3D-printed hearts to the nanoworld revealed by SEM, Ningbo University’s Institute of Intelligent Medicine is proving how cross-disciplinary innovation can reshape the future of healthcare.

Continue
Why the TS400 Smartwatch Is a Game-Changer for Outdoor Enthusiasts

For anyone who lives for the trail, the summit, or the thrill of exploration, gear that keeps up with your adventures isn’t just a luxury—it’s a necessity. Enter the TS400, a smartwatch designed to be more than a gadget: it’s a reliable companion for the great outdoors, blending rugged durability with cutting-edge tech.

 

What sets the TS400 apart? Start with its build. Crafted with Celestial Crystal Shield sapphire glass and a high-strength alloy shell, it laughs off scratches, dust, and even extreme temperatures—from frost-bitten peaks to scorching deserts. Add 3ATM water resistance and IP68 dustproofing, and it’s ready for everything from sudden downpours to 30m swims.

 

Navigation is a standout feature, too. Equipped with multi-satellite GNSS positioning (BDS, GPS, GLONASS, and more), it delivers centimeter-precise tracking, even in urban canyons or remote wilderness. Pair that with real-time altitude, air pressure, and compass data, and you’re never blind to your surroundings. When night falls, a 400-lumen flashlight with four modes (high beam, SOS, and more) cuts through darkness, perfect for late hikes or campsite setups.

 

Beyond exploration, it’s a health and fitness powerhouse. With 128+ sports modes, it tracks runs, climbs, and swims with precision, while 24/7 health monitoring (heart rate, blood oxygen, sleep) keeps you in tune with your body. Throw in the Da GPT smart assistant for on-the-go queries, and the TS400 doesn’t just track your journey—it elevates it. For outdoor lovers, this isn’t just a watch. It’s a ticket to bolder, smarter adventures.

Custom logo outdoor watch manufacturerBulk order adventure smartwatch supplierOEM sports watch customization serviceWholesale GPS fitness tracker watches

 

Continue
LVSUN 10-USB-C Centralized Charging Station A High-Density Charging Solution for Handheld Computers, Custom-Tailored for Warehouse and Logistics Wholesale

In high-intensity environments such as warehousing, sorting, and last-mile delivery, continuous charging of handheld devices (handheld terminals, barcode scanners, tablets, etc.) is a key driver of operational efficiency. A single charging setup often cannot meet the concurrent charging, heat management, and on-site administration needs of the same workspace, leading to queues, throttled devices, or increased maintenance costs. LVSUN’s 10-USB-C Centralized Charging Station is designed to address these challenges with high-density port outputs, intelligent thermal management, and centralized control, enabling wholesalers to deploy a one-stop charging solution and boost device turnover within a given time, while keeping the workspace tidy.

       ·High density and scalable output: Centralized charging for multiple handheld devices and peripherals, significantly reducing on-site cabling and outlet requirements, and increasing desktop utilization.

       ·USB-C PD fast charging: Supports mainstream fast-charging protocols to quickly restore device readiness during peak periods, improving turnover efficiency for wholesale teams.

       ·Intelligent thermal management and safety: Integrated cooling channels and temperature-control strategies maintain low temperature rise, mitigating heat-related performance degradation; built-in protections such as overcurrent and short-circuit protection enable unified monitoring by operations teams.

       ·Deployment-friendly and operational convenience: Standardized installation guidelines, centralized monitoring, and logging reduce upfront installation costs and future expansion challenges.

In warehouses, sorting centers, and logistics dispatch, large volumes of handheld devices must be charged and cycled quickly within constrained spaces and with high personnel turnover. The 500W 10-USB-C Centralized Charging Station, with its high-density charging, unified thermal control, and simplified cabling, helps wholesale scenarios achieve: reduced charging wait times, improved on-site management efficiency, scalable expansion for growing operations, and a significantly lower total cost of ownership (TCO).

Continue
Affordable SEM for Resource-Limited Environments What to Look For

For many universities, national labs, and research institutes in regions such as Africa and the Middle East, access to advanced scientific instrumentation is often limited by budget, infrastructure, and maintenance challenges. Scanning Electron Microscopes (SEMs) are essential tools for materials science, life sciences, and education, but traditional models can be prohibitively expensive and difficult to maintain.

This is why affordable SEM solutions have become critical for resource-limited environments. But "affordable" should not mean compromising on performance or usability. Below, we explore the key factors to consider when selecting a cost-effective SEM and how CIQTEK is helping research communities worldwide overcome these challenges.

 

Why Resource-Limited Labs Need Affordable SEMs

In developing regions, researchers often face unique barriers:

  • Budget Constraints – High upfront costs and ongoing maintenance make many SEMs inaccessible. 

  • Infrastructure Limitations – Power supply stability, room conditions, and service availability can restrict choices.

  • Educational Demands – Universities need SEMs that are easy to learn, operate, and maintain for student training.

  • Service and Support Gaps – Remote locations often lack local technical support, making reliability and remote assistance crucial.

For example, a university in East Africa wanted to give engineering students access to SEM imaging. A million-dollar instrument was out of reach, but a cost-effective, compact SEM made it possible to expand their curriculum and attract new research collaborations; A national lab in the Middle East struggled with power fluctuations that frequently disrupted their older high-end SEM. Switching to a robust, lower-maintenance system ensured consistent imaging and reduced downtime.

 

What to Look for in an Affordable SEM

When evaluating SEM options for resource-limited labs, consider the following:

  • Total Cost of Ownership
    Not just the purchase price, factor in maintenance, consumables, and energy use.

  • Ease of Use
    A user-friendly interface helps reduce training costs and allows students and new researchers to get hands-on quickly.

  • Durability & Reliability
    Instruments should perform consistently even in less-than-ideal lab conditions.

  • Remote Support & Training
    For institutions far from service centers, remote diagnostics, online training, and virtual demonstrations are essential.

  • Scalability
    SEMs should be versatile enough to support both teaching and research, making them a long-term investment.

 

CIQTEK SEM: Affordable Without Compromise

At CIQTEK, we’ve worked with institutions worldwide to deliver SEMs that combine affordability with reliability. Our systems are designed for teaching labs, national facilities, and emerging research groups that need dependable performance without excessive cost.

  • Budget-Friendly Pricing – Enables universities and labs to invest in advanced imaging while leaving room for consumables, training, or lab expansions.

  • Low Maintenance Design – Reduced service needs mean fewer interruptions and lower long-term costs.

  • User-Friendly Interface – Ideal for classrooms, making SEM operation accessible to undergraduates and postgraduates alike.

  • High-Quality Imaging – Clear results suitable for materials science, biology, and applied engineering research.

 

Whether for a teaching university in Africa or a national lab in the Middle East, CIQTEK SEMs provide a reliable and affordable choice that empowers scientific discovery.

CIQTEK SEM microscope

 

>> If you’re looking for a cost-effective SEM, contact CIQTEK today to learn how our SEM instruments can support your research and teaching needs.

Continue
\"Nature Materials\"- CIQTEK SNVM Assists Customers in Achieving Key Breakthroughs in Graphene Spin Devices

Recently, a team led by Wang Haomin from the Shanghai Institute of Microsystem and Information Technology of the Chinese Academy of Sciences made significant progress in studying the magnetism of zigzag graphene nanoribbons (zGNRs) using a CIQTEK Scanning Nitrogen-vacancy Microscope (SNVM).

 

Building on previous research, the team pre-etched hexagonal boron nitride (hBN) with metal particles to create oriented atomic trenches and used a vapor-phase catalytic chemical vapor deposition (CVD) method to controllably prepare chiral graphene nanoribbons in the trenches, obtaining ~9 nm wide zGNRs samples embedded in the hBN lattice. By combining SNVM and magnetic transport measurements, the team directly confirmed its intrinsic magnetism in experiments. This groundbreaking discovery lays a solid foundation for the development of graphene-based spin electronic devices. The related research findings, titled "Signatures of magnetism in zigzag graphene nanoribbons embedded in a hexagonal boron nitride lattice," have been published in the prestigious academic journal "Nature Materials".

 

Graphene, as a unique two-dimensional material, exhibits magnetic properties of p-orbital electrons that are fundamentally different from the localized magnetic properties of d/f orbital electrons in traditional magnetic materials, opening up new research directions for exploring pure carbon-based magnetism. Zigzag graphene nanoribbons (zGNRs), potentially possessing unique magnetic electronic states near the Fermi level, are believed to hold great potential in the field of spin electronics devices. However, detecting the magnetism of zGNRs through electrical transport methods faces multiple challenges. For instance, nanoribbons assembled from the bottom up are often too short in length to reliably fabricate devices. Additionally, the high chemical reactivity of zGNR edges can lead to instability or uneven doping. Furthermore, in narrower zGNRs, the strong antiferromagnetic coupling of edge states can make it difficult to detect their magnetic signals electrically. These factors hinder direct detection of the magnetism in zGNRs.

 

ZGNRs embedded in the hBN lattice exhibit higher edge stability and feature an inherent electric field, creating ideal conditions for detecting the magnetism of zGNRs. In the study, the team used CIQTEK's Room-Temperature SNVM to observe the magnetic signals of zGNRs directly at room temperature.

 

Figure 1: Magnetic measurement of zGNR embedded in a hexagonal boron nitride lattice using Scanning Nitrogen-vacancy Microscope

 

In electrical transport measurements, the fabricated approximately 9-nanometer-wide zGNR transistors demonstrated high conductivity and ballistic transport characteristics. Under the influence of a magnetic field, the device exhibited significant anisotropic magnetoresistance, with a magnetoresistance change of approximately 175 Ω at 4 K, a magnetoresistance ratio of about 1.3%, and this signal persisted even at temperatures as high as 350 K. Hysteresis was only observed under a magnetic field perpendicular to the plane of the zGNRs, confirming its magnetic anisotropy. Through analysis of the variation of magnetoresistance with tilting angle, the researchers found that the magnetic moment is perpendicular to the sample surface. Furthermore, the decrease in magnetoresistance with increasing source-drain bias and temperature revealed the interaction between magnetic response and charge transport and thermal vibrations.

 

Figure 2: Magnetic transport characteristics of 9-nanometer-wide zGNR devices embedded in hBN

 

This research, by combining Scanning Nitrogen-vacancy Microscope technology and transport measurements, directly confirmed the existence of intrinsic magnetism in hBN-embedded zGNRs for the first time, providing a possibility for controlling magnetism through an electric field. This work not only deepens the understanding of graphene's magnetic properties but also opens up new pathways for the development of spin electronic devices based on graphene.

 

Experience the Nano-scale Magnetic Imaging System

 

CIQTEK invites you to experience the Scanning Nitrogen-vacancy Microscope (SNVM) – a globally leading nano-scale magnetic field imaging system, operating at temperatures of 1.8~300 K with a vector magnetic field of 9/1/1 T, achieving a magnetic spatial resolution of 10 nm, and magnetic sensitivity of 2 μT/Hz1/2.

 

SNVM is a precision measurement instrument that combines Diamond Nitrogen-vacancy (NV) Optically Detected Magnetic Resonance (ODMR) technology with Atomic Force Microscopy (AFM) scanning imaging technology. It features high spatial resolution, high-sensitivity magnetic imaging, versatile detection capabilities, and non-invasive detection advantages, making it important in areas such as magnetic domain characterization, antiferromagnetic imaging, superconductor characterization, and research on two-dimensional magnetic materials.

Room temperature version of SNVM

Cryogenic version of SNVM

 

 

 

Continue
Beyong Nano Showcases CIQTEK SEM3200 at the 33rd International Materials Research Congress 2025 in Mexico

Beyong Nano, a leading innovator in nanotechnology, is set to unveil its groundbreaking model CIQTEK SEM3200 at the prestigious 33rd International Materials Research Congress taking place in Cancun, Mexico.

 

The Congress, known for bringing together pioneers and visionaries in the field of materials science, provides Beyong Nano with the perfect platform to showcase CIQTEKlatest technological marvel.

 

The Scanning Electron Microscope is poised to revolutionize the industry with its advanced features, unparalleled performance, and potential applications across various sectors. 

 

Visitors to the Beyong Nano booth at the congress can experience firsthand the transformative potential of the model 3200 and engage with the company's team of experts to learn more about its features, applications, and future developments.

Continue
CIQTEK at The Egyptian Society of Electron Microscopy Conference 2025

We, CIQTEK, are pleased to invite you to the Electron Microscopy Conference 2025, held from October 13th to 15th, 2025, at the Theodor Bilharz Research Institute, Egypt. 

 

The theme of this year's conference is: "The Importance of Electron Microscopy in Enlightening the Invisible". It reflects the profound impact that electron microscopy continues to have across diverse scientific disciplines, from biology to materials science.

 

Over the conference's three days, we will have the opportunity to engage in in-depth tutorials, keynote sessions, and explore the latest technological advancements in the field of Electron MicroscopesIt will follow a Hybrid format, allowing participants from around the world to join us both in person and virtually, ensuring an inclusive and accessible experience for all.

 

Meet us at ESEM

Date: October 13 - 15, 2025

 

LocationTheodor Bilharz Research Institute, Egypt

 

 

Continue
Understanding Quartz Crystal Frequency Characteristics Selecting the Optimal Oscillator Solution for Your Needs

The basic working principle of quartz crystal oscillator

Quartz crystal oscillators utilize high-quality piezoelectric crystals, harnessing the piezoelectric effect to generate stable oscillations. The crystal's quality factor (Q) directly impacts frequency stability—a higher Q provides a more accurate and reliable clock signal. The vibration frequency characteristics are determined by three key factors: crystal thickness, crystal geometry, and cutting method.

 

Effect of thickness on frequency

The frequency of a quartz crystal is inversely proportional to the thickness of the crystal:

Thin wafers: Support higher oscillation frequencies, ideal for high-frequency applications.

Thick wafers: small vibration amplitude and excellent resistance to mechanical shock

Technological breakthrough : Overtone crystal technology enables a chip with a fundamental frequency of 20MHz to reach 100MHz through the fifth overtone, allowing medium and low fundamental frequency chips to meet high-frequency requirements of hundreds of megahertz.

 

Chip shape and frequency characteristics

 

Tuning Fork Chip

Typical application: 32.768kHz crystal oscillator

Typical dimensions: 3.2 × 1.5 × 0.8 mm

Temperature characteristics: parabolic characteristics of -0.04ppm/℃²

Manufacturing process: Photolithography technology is used to achieve micron-level precision

Frequency determining factors: mainly depends on the fork length (L), the longer the length, the higher the frequency

Advantages: Especially suitable for low-frequency precise timing scenarios

 

Fectangular Wafer

Frequency range: MHz level application

Miniaturization: From 7.0×5.0mm to 1.6×1.2mm

High frequency: Up to 300MHz through chamfered edge technology

Low power consumption: current consumption can be as low as 0.5μA

Main features: convenient for large-scale production and standardized packaging

Frequency Determinants: Thickness is the Main Influencing Factor

 

Comparison of key cutting technologies

The cutting angle of the quartz crystal (defined in the XYZ coordinate system) directly affects:

(1) Long-term aging characteristics

(2) Temperature stability

(3) Frequency accuracy

Mainstream cutting methods : AT cutting, BT cutting, SC cutting, IT cutting, and special cutting processes designed specifically for tuning fork wafers. Each method has its own performance advantages and applicable scenarios.

 

Contact

Need the optimal quartz crystal oscillator solution for your application? Our team of engineers can provide complete crystal oscillator selection recommendations and technical support, from low to high frequencies, based on your specific application needs.

Please contact our sales team:  

Tel: 0086-576-89808609  

Email: market@acrystals.com

Website: [www.acrystals.com](http://www.acrystals.com)  

Continue
The HK72 - Your Slim, Smart Health Companion

Finding a comfortable yet capable health tracker just got easier with the HK72 smart bracelet. This ultra-light 38g wearable disappears on your wrist with its barely-there 9.9mm metal body, proving you don't need bulk for advanced features. The vibrant 1.47-inch AMOLED screen delivers crisp notifications and health data at a glance, while the 10-day battery life outlasts most smartwatches.

 

What sets the HK72 apart is its thoughtful health tracking. It automatically monitors your heart rate and blood oxygen around the clock, with special attention to women's health through menstrual cycle tracking. The sleep analysis breaks down your REM cycles, while the stress monitor suggests breathing exercises when tension rises. Unlike complex smartwatches, it presents this data simply through an intuitive interface.

 

For active users, the IP68 waterproof rating means no workout is off-limits - whether swimming laps or running in rain. The bracelet automatically detects exercise types and tracks progress through three motivational activity rings. Smart features like Bluetooth calling and offline Alipay payments add convenience without complicating the experience. With multiple stylish watch faces and an always-on display option, the HK72 blends seamlessly into both gym sessions and business meetings - a rare balance of form and function in wearable tech.

Ultra thin AMOLED smart braceletOEM smart bracelet supplierCustom logo fitness trackers

Continue
CIQTEK to Showcase Advanced Scientific and Oilfield Instruments at ARABLAB 2025 in Dubai

CIQTEK is excited to announce our participation in ARABLAB 2025, one of the leading international trade shows for laboratory technology, scientific instruments, and petroleum exploration equipment. The event will take place from 23 to 25 September 2025 at the Dubai World Trade Center, UAE, and visitors can find us at Booth H1-C24, Sheikh Saeed Hall 1.


At the exhibition, CIQTEK will present our latest innovations in electron microscopy (FIB/SEM, TEM), electron paramagnetic resonance (EPR) spectrometers, BET Surface Area &Porosimetry Analyzers, and other advanced analytical instruments. The team will demonstrate product capabilities, share real-world application success stories, and discuss solutions for researchers and industrial professionals across multiple sectors.

 

In addition, CIQTEK will introduce QOILTECH, our specialized brand for innovating petroleum exploration and oilfield services. QOILTECH focuses on the R&D, manufacturing, and sales of petroleum exploration equipment, including RSS, MWD/LWD, resistivity, and near-bit azimuth gamma tools, designed for extreme environments. With proven expertise in tool design and application, QOILTECH delivers equipment capable of operating at depths of up to 100,000 meters annually, supporting efficient and reliable petroleum logging while drilling operations.

 

QOILTECH oilfield services


ARABLAB provides a key platform to connect with industry experts, researchers, and distributors from around the world. CIQTEK looks forward to engaging with attendees, showcasing how our advanced scientific instruments and petroleum exploration tools can drive breakthroughs in research, industrial applications, and oilfield operations.

We warmly invite you to visit our booth at H1-C24 to experience our instruments in action and speak directly with our product specialists.

Event Details:

 

  • Date: 23–25 September 2025

  • Venue: Dubai World Trade Center, UAE

  • Booth: H1-C24, Sheikh Saeed Hall 1

Continue
Home Archives